		STUDY MODULE DI	ESCRIPTION FORM			
Name of the module/subject				Code		
Field of	mokinetic proce	sses in renewable energy	Profile of study	1010315431010305650		
	_ · ·		(general academic, practical)			
Power Engineering			general academic	2/3		
Elective path/specialty Industrial Thermal Power Engineering			Subject offered in: Polish	Course (compulsory, elective) obligatory		
Cycle of	study:		Form of study (full-time,part-time)			
Second-cycle studies			part-time			
No. of h	ours			No. of credits		
Lectur	e: 8 Classes	s: - Laboratory: 8	Project/seminars:	- 2		
Status of the course in the study program (Basic, major, other)			(university-wide, from another f	ield)		
		ersity-wide				
Educatio	on areas and fields of sci	ence and art		ECTS distribution (number and %)		
techr	ical sciences			2 100%		
Technical sciences				2 100%		
Resp	onsible for subi	ect / lecturer:	Responsible for subject	ct / lecturer:		
dr h	ah inż lacek Hauser	prof PP	dr inż Przemysław Skrzyp	~~~~		
ema	ill: jacek.hauser@put.j	poznan.pl	email: przemyslaw.s.skrzyp	oczak@put.poznan.pl		
tel. (61 6652688		tel. 61 6652585			
Fac	ulty of Electrical Engin	eering	Faculty of Electrical Engineering			
Prere	quisites in term	s of knowledge, skills and	d social competencies:			
	Basic knowledge in mathematics, physics and electrical engineering.					
1	Knowledge					
2	Skills	Ability of effective self-education	n in the field connected with the chosen field of study.			
3	Social competencies	He is aware of the need to broad	len his competence, readiness	to cooperate within the team		
Assu	mptions and obj	ectives of the course:				
- Syste	matization of knowled energy	ge about the types of energy pres	ent in industry, ways of conver	ting them into other forms of		
- Know	how to transport heat	and measure temperature				
- Unde	rstanding the basics o	f heat exchange in typical thermole	cinetic systems and electrother	a field of study		
Know						
	viedge of energy hala	nce in industry - [K_W07+]				
2. Fam	iliarity with the proces	ses and methods of electrical heat	ina occurrina in the industry - I	'K W04+1		
3. Has	basic knowledge of th	e ways and ways of transferring h	eat, electrical transformations	occurring in electrical		
engineering and electrothermics, and methods of measuring temperature - [K_W12+++]						
Skills	:					
1. Describe the earthly primary energies, evaluate the significance of the individual energy flow channels - [K_U01++]						
2. Calculate and evaluate the efficiency of the electricity conversion into energy - [K_U09+]						
s. solving a problem problem on the occurrence of neat losses and useful energy - [K_003+]						
1 He can work in a group. He can share and coordinate work between team members - IK_K01++ 1						
1. He C	an work in a group. H	e can share and coordinate WOFK I	between team members - [K_K	.01++,]		

Assessment methods of study outcomes

Lecture: Assessment of knowledge presented at the written test in the 14th week of classes

Laboratory classes: assessment of knowledge and skills related to the implementation of the exercise task, individual assessment of the basis of involvement in the exercise and discussion of n.t. obtained results of the measurements, the diligence and the quality of the presented multimedia presentations (including the preparation) from the laboratory exercises.

Course description

LECTURES

- a multimedia lecture with slides presenting characteristics and drawings describing earthly primary energies, sources and quantities of renewable and non-renewable energy resources and their production and processing paths.

- presenting and initiating discussion. Earth - Sun - Moon - Space, the amount of energy reaching the Earth's pile and the flow of its energy

- taking into account the economic and ecological aspects of the possibility of obtaining energy from terrestrial primary energy with particular emphasis on renewable energies

- Presentation of knowledge in the field of energy conversion in connection with the students already know from the field of energy production - especially the efficiency of power plants and thermal power plants

- Discussion of electrothermal methods, including the possibility of using them in industrial conditions, generation of electromagnetic heat losses, useful heat,

- Discussion based on real systems of the basis of thermokinetics, heat conduction, convection of heat transfer

- Discussion of permissible temperatures in electrical equipment, temperature distributions in the heating circuit of equipment, discussion of the potential volume voltages that can be transmitted and dissipated in the actuators of electrical appliances.

- Presentation of measuring instruments - electrical thermometers for temperature measurement with special regard to industrial equipment.

LABORATORY CLASSES

- get acquainted with the possibilities and make measurements using various measuring devices - thermocouples, resistors, pyrometers.

- discussion of the values ??obtained during measurements, analysis of differences in indications and causes of their occurrence

- execution of measurements of electric power taken by electrothermal devices and total useful power reaching the charge. Determination of the efficiency of the tested devices. Discussion on energy flow paths in studied devices, relative values ??of thermal start and possibilities of their limitation in practical terms

- measurements and determination of the efficiency of converting monochromatic electricity to microwave energy, working in the team to develop preliminary results of measurements,

- on the basis of the above calculations, presenting during the classes in the form of graphs of volume distributions of power, efficiency of the device,

- inference by students n.t. Uneven distribution of the field in the resonant cavity and consequent consequences associated with the heating of the charge.

Applied methods of education: lectures:

- lecture with multimedia presentation (including: drawings, photographs, animations, sound, films) supplemented by examples given on the board

- an interactive lecture with questions to a group of students or to specific students
- Student activity is taken into account during the final assessment
- during the lecture, initiating the discussion
- theory presented in close connection with practice
- theory presented in connection with current knowledge of students
- consideration of various aspects of the presented issues, including: economic ones

Applied methods of education: laboratories:

- laboratories supplemented with multimedia presentations (photos, animations, charts)
- use of tools to enable students to perform tasks at home (author software)
- computational experiments
- work in teams

Updated 2017:

- introducing issues related to the use of the thermal imager and its use during laboratory classes
- visualizing the results obtained also by making an infrared photo that the student attaches to the report and interprets.

Presented program content and laboratory activities are based on the results of scientific research conducted at the Institute.

Basic bibliography:

1. Hauser J.: Elektrotechnika. Podstawy elektrotermii i techniki świetlnej. Wydawnictwo Politechniki Poznańskiej, Poznań 2006

2. Michalski L., Eckersdorf K., Kucharski J.: Termometria. Przyrządy i pomiary. Wydawnictwo Politechniki Łódzkiej, Łódź 1998

- 3. Hering M.: Podstawy elektrotermii cz. I. WNT, Warszawa 1992.
- 4. Hering M.: Podstawy elektrotermii cz. II. WNT, Warszawa 1998
- 5. Hauser J.: Podstawy elektrotermicznego przetwarzania energii ZWK.D 1996
- 6. Materiały do zajęć laboratoryjnych dostępne na stronie lumen.iee.put.poznan.pl

7. Hauser J.: Elektrotechnika. Podstawy elektrotermii i techniki świetlnej. Wydawnictwo Politechniki Poznańskiej, Poznań 2006

8. Michalski L.: Eckersdorf K., Kucharski J.: Termometria. Przyrządy i pomiary. Wydawnictwo Politechniki Łódzkiej, Łódź 1998
 9. Hering M.: Podstawy elektrotermii cz. I. WNT, Warszawa 1992.

10. Hering M.: Podstawy elektrotermii cz. II. WNT, Warszawa 1998

11. Hauser J.: Podstawy elektrotermicznego przetwarzania energii ZWK.D 1996

12. Materiały do zajęć laboratoryjnych dostępne na stronie lumen.iee.put.poznan.pl

Additional bibliography:

1. Pluta Z.: Podstawy teoretyczne fototermicznej konwersji energii słonecznej, PW 2013

2. Pluta Z.: Podstawy teoretyczne fototermicznej konwersji energii słonecznej, PW 2013

Result of average student's workload

Activity	Time (working hours)				
1. Participation in lectures	15				
2. Participation in laboratory classes	15				
3. Participation in consultations (lectures)	7				
4. Participation in consultations (laboratory classes)	4				
5. preparation for laboratory classes (home activites)	8				
6. preparation reports to laboratory classes (homework)	8				
7. preparation for the exam	5				
8. participation in the final exam	2				
Student's workload					
Source of workload	hours	ECTS			
Total workload	64	2			
Contact hours	43	1			
Practical activities	31	1			